biobank Research Analysis Platform

Enabled by **DNAnexus**[®]

Analyzing UK Biobank proteomics data on the UKB-RAP

JUNE 2023

© 2023 DNAnexus, Inc. All Rights Reserved.

Speakers & Agenda

Alexandra Lee, PhD Sr. Community Engagement/ Biomedical data scientist

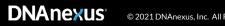
- 1. New proteomics data on the UKB-RAP
- 2. How to access proteomics on UKB-RAP
- 3. Example: Differential expression analysis
- 4. Example: pQTL analysis

Previous proteomics webinar

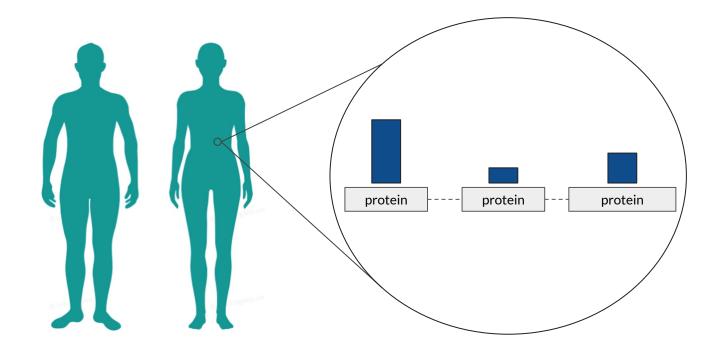
https://www.youtube.com/watch?v=btOYvmgwZGA

DNANEXUS® © 2023 DNAnexus, Inc. All Rights Reserved.

Helpful resources


- UKB Research analysis platform overview webinar
- Introduction to JupyterLab notebooks on RAP webinar
- End to end target discovery with GWAS and PheWAS on the UKB research analysis platform - webinar

Learning Objectives


By the end of this session, you should be able to:

- Articulate the proteomics data available on the UKB-RAP
 - Apply steps how to extract and access proteomic data on the UKB-RAP
- Apply steps how to download and access analysis code on the UKB-RAP
- Execute various proteomic analyses with the tools available on the UKB-RAP
- Access the UKB-RAP community forum and additional courses

1. About Proteomics



Proteomics gives a snapshot of an organism's state

Proteomics data from UKB Pharma Proteomics Project (UKB-PPP)

- Measured by Olink
- ~53,000 participants
- ~1,500 proteins

https://www.biorxiv.org/content/10.1101/2022.06.17.496443v1.full.pdf

	ACAN ;Aggrecan core protein	ABHD14B ;Protein ABHD14B	AARSD1;Alanyl-tRNA editing protein Aarsd1	ACTN4 ;Alpha- actin-4
sample 1	7.6	4.3	7.2	2.3
sample 2	6.9	6.7	6.8	1.7
sample 3	3.2	9.2	3.0	0.2

White paper about Olink technology

		ACAN;Aggrecan core protein	ABHD14B ;Protein ABHD14B	AARSD1;Alanyl-tRNA editing protein Aarsd1	ACTN4 ;Alpha- actin-4
~53,000	sample 1	7.6	4.3	7.2	2.3
samples	sample 2	6.9	6.7	6.8	1.7
	sample 3	3.2	9.2	3.0	0.2

White paper about Olink technology

Protein panels (~1,500 proteins):

- Inflammation
- Oncology
- Cardiometabolic
- Neurology

	ACAN ;Aggrecan core protein	ABHD14B ;Protein ABHD14B	AARSD1;Alanyl-tRNA editing protein Aarsd1	ACTN4;Alpha- actin-4
sample 1	7.6	4.3	7.2	2.3
sample 2	6.9	6.7	6.8	1.7
sample 3	3.2	9.2	3.0	0.2

White paper about Olink technology

	ACAN;Aggrecan core protein	ABHD14B ;Protein ABHD14B	AARSD1 ;Alanyl-tRNA editing protein Aarsd1	ACTN4 ;Alpha- actin-4
sample 1	7.6	4.3	7.2	2.3
sample 2	6.9	6.7	6.8	1.7
sample 3	3.2	9.2	3.0	0.2

Normalized protein expression (NPX)

UKB-PPP preprint

2. How to access proteomics data on UKB RAP

Adding proteomics data to your project

Note: Users will need to their UKB application be in Tier 2 or above in order to access this proteomics data

- Refresh data on existing project
- Create a new project and dispense proteomics data to this (*if refresh takes a while)

Collect data

- 1. Phenotype data
- 2. Protein expression data

Get phenotype data from Cohort Browser

+ Add Filter to Cohort ×		EDIT FILTER Untitled Cohort 🖉 🗙	
PHENO GENO ever smo Assessment Centre Touchscreen Ulestyle and environment Smoking Ever śmöked Instance 0 	\Box	Ever smoked Instance 0 ISANY OF ~ Yes × © Cancel Apply Filter	
ever smoked Instance 1 ever smoked Instance 2		biobank PROJECTS V TOOLS V ORGADMIN V HELP V	Q ~ (A) ~
Ever smoked Instance 3		app77202_20220611175502.dataset , 502,411 Participants + 298,714 Participants +	CI#Dashboard Actions
		iii) ever_smoked_cases +Add Filter @Clear All Filters 298,714 of 502.411 Participants Select PARTICIPANT Ever smoked Instance 0 is Yes ©	This canori has unsaved changes $rightarrow$
		OVERVIEW DATA PREVIEW GENOMICS	
		\checkmark	
		<pre>cohort_dataset = "project-XXX:record-XXX"</pre>	
			AD sharet we even ale

AD phenotype example Ischemic disease example

Get protein expression data from Cohort Browser

Table Exporter App

Run Analysis 💿 Table exporter				Required field	not configured Start Analysis
Q Reset zoom			ANALYSIS SETTINGS	ANALYSIS INPUTS 1	APP SETTINGS
			ABLE-EXPORTER *		Enable Batch OFF
		•	Table exporter		⑦ About this ap
		• ©	Dataset or Cohort or Dashboard	Select Ro	oord
taset_or_cohort_or_dashboard		٢	File containing Field Names	Select Re	
Table exporter	C2	OPTION	s		
	CSV *CSV, *CSV	• •	Output Prefix	data	
	7.5%, 1.5%	۲	Output File Format	CSV	÷
		٢	Coding Option	REPLACE	Ŷ
field_names_file_txt		0	Header Style	FIELD-NAME	~

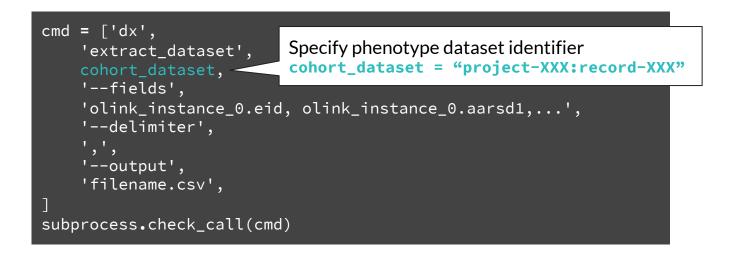
dx extract_dataset

\$ dx extract_dataset <dataset> --fields "entity1.field1, entity1.field2, entity2.field4"

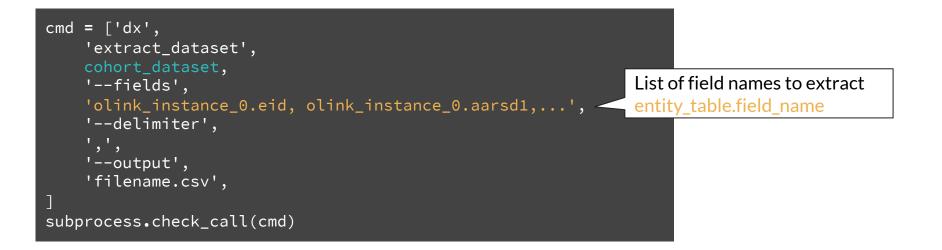
€ TABLE-EXPORTER ▼			Enable Batch OFF
Table exporter			⑦ About this app
* ⑦ Dataset or Cohort or Dashboard		ischaemic_cases	٥
File containing Field Names		ield_names.txt	٥
OPTIONS			
* 💿 Output Prefix			
Output File Format	CSV		~
⑦ Coding Option	REPLACE		~
③ Header Style	FIELD-NAME		~
ADVANCED OPTIONS			
⑦ Entity	olink_instance_0		
⑦ Field Names			
⑦ Field Titles			
COHORT/DASHBOARD OPTIONS			
⑦ Cohort Table Entity Names			
Ochort Table Entity Titles			

TABLE-EXPORTER -		Enable Batch OFF
Table exporter	F	Phenotype dataset
O Dataset or Cohort or Dashboard	lischaemic_cases	Phenotype dataset e.g. *.dataset
⑦ File containing Field Names	Field_names.txt	0
OPTIONS		
* ⑦ Output Prefix		
Output File Format	CSV	~
Oding Option	REPLACE	~
③ Header Style	FIELD-NAME	~
ADVANCED OPTIONS		
③ Entity	olink_instance_0	
⑦ Field Names		
③ Field Titles		
COHORT/DASHBOARD OPTIONS		
⑦ Cohort Table Entity Names		
© Cohort Table Entity Titles		


Cable-exporter -		Enable Batch OFF	
Table exporter		⑦ About this app	
O Dataset or Cohort or Dashboard	ischaemic_cases	٥	
© File containing Field Names	i field_names.txt	List of field name	es
OPTIONS		List of field name e.g. eid, aarsd1,	
Output Prefix			
Output File Format	CSV	~	
Ocding Option	REPLACE	~	
③ Header Style	FIELD-NAME	~	
ADVANCED OPTIONS			
③ Entity	olink_instance_0		
⑦ Field Names			
③ Field Titles			
COHORT/DASHBOARD OPTIONS			
⑦ Cohort Table Entity Names			
⑦ Cohort Table Entity Titles			List of field names


© 2021 DNAnexus, Inc. All Rights Reserved. Proprietary and

Cable-exporter *		Enable Bato	h OFF
Table exporter		0	About this app
* ⑦ Dataset or Cohort or Dashboard		schaemic_cases	٥
⑦ File containing Field Names		ield_names.txt	٥
OPTIONS			
Output Prefix			
Output File Format	CSV		~
⑦ Coding Option	REPLACE		~
⑦ Header Style	FIELD-NAME		~
ADVANCED OPTIONS			
⑦ Entity	olink_instance_0	\leq entity table	
 Field Names Field Titles 		<pre>entity table e.g. olink_instance_#</pre>	
COHORT/DASHBOARD OPTIONS			
⑦ Cohort Table Entity Names			
⑦ Cohort Table Entity Titles			


DNAnexus[®] © 2021 DM

```
cmd = ['dx',
    'extract_dataset',
    cohort_dataset,
    '--fields',
    'olink_instance_0.eid, olink_instance_0.aarsd1,...',
    '--delimiter',
    ',',
    '--output',
    'filename.csv',
]
subprocess.check_call(cmd)
```


DNAnexus[®]

Get list of field names for all proteins

cmd = ["dx", "extract_dataset", dataset, "-ddd", "--delimiter", ","]
subprocess.check_call(cmd)

data_dict_df = pd.read_csv("*data_dictionary.csv")

data_dictionary

	coding_name	units	title	name	entity	
	data_coding_9	NaN	Sex	p31	participant	26
L.	NaN	years	Year of birth	p34	participant	27
	data_coding_1010	NaN	Illnesses of father Instance 0	p20107_i0	participant	23823

entity_dictionary

	entity	entity_title	entity_description	entity_label_plural	entity_label_singular
0	participant	Participant	NaN	Participants	Participant
1	death	Death Record	NaN	Death Records	Death Record
2	death_cause	Death Cause Record	NaN	Death Cause Records	Death Cause Record
3	hesin	Hospitalization Record	NaN	Hospitalization Records	Hospitalization Record

coding_dictionary

	coding_name	code	meaning	concept	display_order	parent_code
87816	data_coding_1010	13	Prostate cancer	NaN	1	NaN
87817	data_coding_1010	12	Severe depression	NaN	2	NaN
87818	data_coding_1010	11	Parkinson's disease	NaN	3	NaN

DNAnexus

Get list of field names for all proteins

field_names = list(data_dict_df.loc[data_dict_df["entity"] == "olink_instance_0", "name"].values)

	entity	name	type
28093	gp_scripts	drug_name	string
28094	gp_scripts	quantity	string
28095	olink_instance_0	eid	string
28096	olink_instance_0	aarsd1	float
28097	olink_instance_0	abhd14b	float
28098	olink_instance_0	abl1	float
28099	olink_instance_0	acaa1	float
28100	olink_instance_0	acan	float
28101	olink_instance_0	ace2	float
28102	olink_instance_0	acox1	float

Get list of field names for all proteins

field_names_str = [f"olink_instance_0.{f}" for f in field_names]
field_names_query = ",".join(field_names_str)

Output

'olink_instance_0.eid,olink_instance_0.aarsd1,olink_instance_0.abhd14b,olink_instance_0.abl1,...

Sample protein expression data

~1,500 proteins

		ACAN	ABHD14B	AARSD1	ACTN4
	sample 1	7.6	4.3	7.2	2.3
~53,000 samples	sample 2	6.9	6.7	6.8	1.7
	sample 3	3.2	9.2	3.0	

npx values

Three protein expression datasets

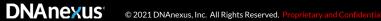
Protein dataset	No. samples	Description	Entity Table
1	~53,000	Randomly selected from 500K UKB participants, pre-selected	olink_instance_0
2	~1,000	COVID-19 imaging first visit	olink_instance_2
3	~1,000	COVID-19 imaging second visit	olink_instance_3

Three protein expression datasets

Protein dataset	No. samples	Description	Entity Table
1	~53,000	Randomly selected from 500K UKB participants, pre-selected	olink_instance_0
2	~1,000	COVID-19 imaging first visit	olink_instance_2
3	~1,000	COVID-19 imaging second visit	olink_instance_3

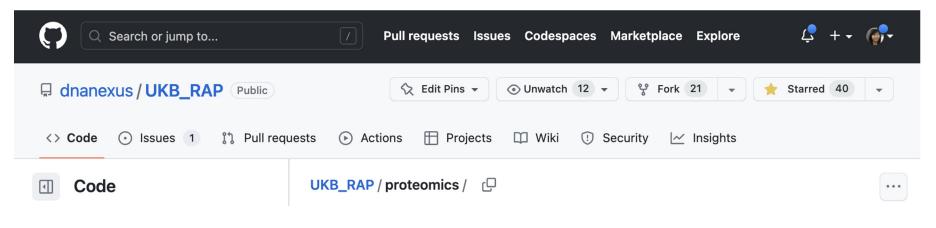
Three protein expression datasets

Protein dataset	No. samples	Description	Entity Table
1 ~53,000		Randomly selected from 500K UKB participants, pre-selected	olink_instance_0
2	~1,000	COVID-19 imaging first visit	olink_instance_2
3	~1,000	COVID-19 imaging second visit	olink_instance_3


Metadata available in Bulk folder

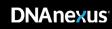
Ê	~	SETTINGS MANAGE MONITOR VISUALIZE	G Back to	
~ Ê	←	All Projects > Bulk > Protein biomarkers > Olink > helper_files		
.Notebook_archive		Current Folder Only Any Name Any ID Any Type Any Class		
 table-exporter alee_example 		Name 12 Type / Class Cr	reated III	
> 🗅 Bulk		olink_assay_version.dat File M	lar 14 2023, 11:24	
D QC_output		Dolink_assay_warning.dat File M	lar 14 2023, 11:24	
Showcase metadata		Dolink_batch_number.dat File M	lar 14 2023, 11:24	
		olink_limit_of_detection.dat File	lar 14 2023, 11:24	
			olink_panel_lot_number.dat File Ma	lar 14 2023, 11:25
		O olink_processing_start_date.dat File M	lar 14 2023, 11:25	
		Olink_proteomics_data.pdf File M	lar 14 2023, 11:30	
		PPP_Phase_1_QC_dataset_companion_doc File	lar 14 2023, 11:30	

Metadata available in Bulk folder


e	SETTINGS	MANAGE MONITOR VISUALIZE		G Back to
× Ê	All Projects	> Bulk > Protein biomarkers >	Olink > helper_files	
 .Notebook_archive table expecter 	Current F	older Only ~ Any Name ~ Any ID ~ Any	y Type 🗸 Any Class 🗸	
 .table-exporter alee_example 	Nam	ie lå	Type / Class	Created
> 🗅 Bulk		olink_assay_version.dat	File	Mar 14 2023, 11:24
 QC_output Showcase metadata 		olink_assay_warning.dat	File	Mar 14 2023, 11:24
		olink_batch_number.dat		Mar 14 2023, 11:24
		olink_limit_of_detection.dat	mit of detection	Mar 14 2023, 11:24
		olink_panel_lot_number.dat	File	Mar 14 2023, 11:25
		olink_processing_start_date.dat	File	Mar 14 2023, 11:25
		Olink_proteomics_data.pdf		
		PPP_Phase_1_QC_dataset_companion_doc		Steps performe

3. How to access analysis code on UKB-RAP

Code is available on github!


https://github.com/dnanexus/UKB_RAP/tree/main/proteomics

Steps to perform on your local machine:

- 1. Clone the repository:
- 2. Navigate into the cloned repository:
- 3. Login to UKB-RAP:
- 4. Upload analysis scripts to the platform:

\$git clone <u>https://github.com/dnanexus/UKB_RAP.git</u>
\$cd UKB_RAP
\$dx login
\$dx upload -r <proteomics> —destination <path on the UKB-RAP>

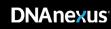
Steps to perform on your local machine:

- 1. Clone the repository:
- 2. Navigate into the cloned repository:
- 3. Login to UKB-RAP:
- 4. Upload analysis scripts to the platform:

Clone repository to local machine

\$git clone <u>https://github.com/dnanexus/UKB_RAP.git</u>

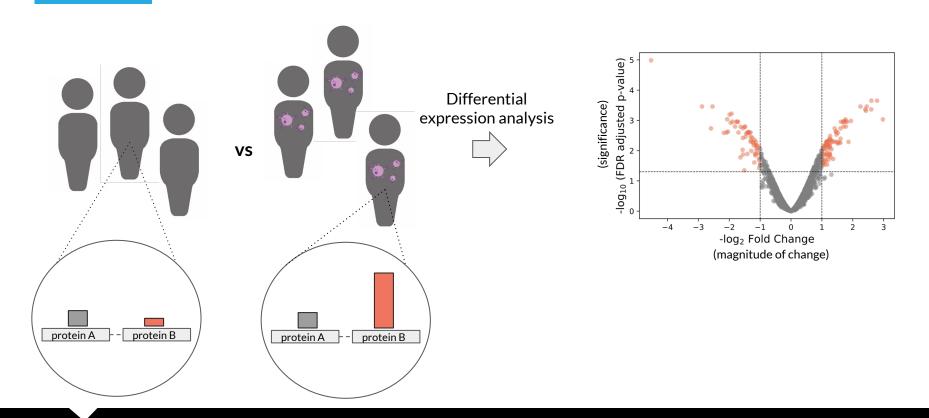
Steps to perform on your local machine:


- 1. Clone the repository:
- 2. Navigate into the cloned repository:
- 3. Login to UKB-RAP:
- 4. Upload analysis scripts to the platform:

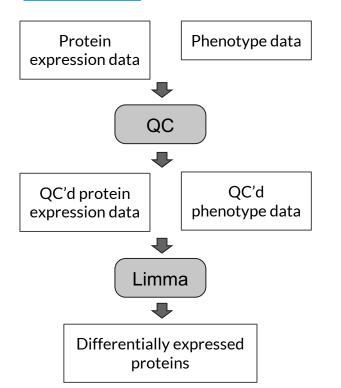
\$git clone <u>https://github.com/dnanexus/UKB_RAP.git</u> \$cd UKB_RAP

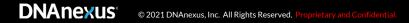
Steps to perform on your local machine:

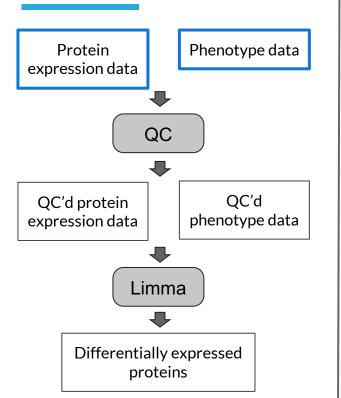
- 1. Clone the repository:
- 2. Navigate into the cloned repository:
- 3. Login to UKB-RAP:
- 4. Upload analysis scripts to the platform:


\$git clone <u>https://github.com/dnanexus/UKB_RAP.git</u>
\$cd UKB_RAP
\$dx login
\$dx upload -r <proteomics> —destination <path on the UKB-RAP>

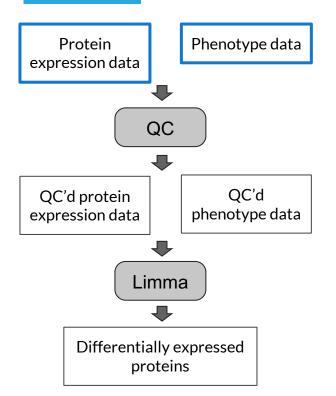
4. Example: Differential expression analysis



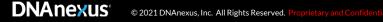

Differential expression analysis used to study mechanisms of disease


DNANEXUS © 2021 DNAnexus, Inc. All Rights Reserved. Proprietary and Confi

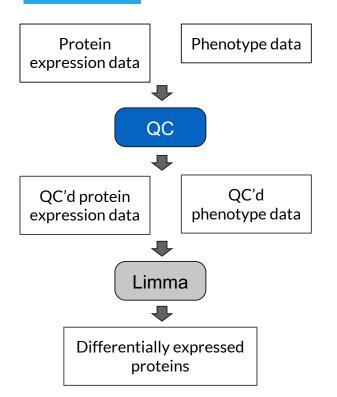
Approach


Approach

NOTE: We are using public proteomic data, not UKB data, for demonstration purposes

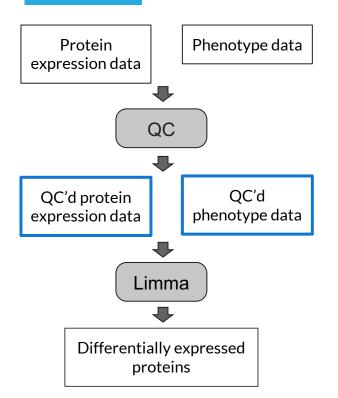


Collect input data

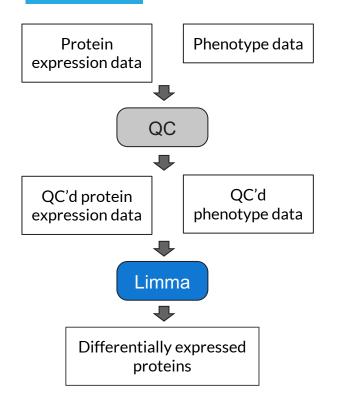


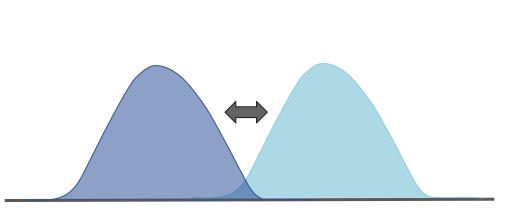
	CA1	ICAM1	C	CHL1	TGFBI	ENG
Plasma_Sample						
H0529.3	7.62107	6.79971	4.7	3174	9.33471	3.12445
H0441.1	6.96085	6.98459	4.3	1338	9.06819	3.31576
H0558.3	7.16983	7.04907	4.7	2713	8.92804	3.16308
H0499.2	7.59577	6.80282	4.5	1559	9.17979	3.19292
H0468.3	7.25945	6.91728	4.84	4307	9.91809	3.47692
	PIDN Ag	ge_at_Base	line	Se	ĸ	Outcome
Plasma_Sample	PIDN Ag	ge_at_Base	line	Se	ĸ	Outcome
Plasma_Sample H0529.3	PIDN Ag 9677		90+	Se: Male		Outcome ecline_AD
					e MCI_D	
H0529.3	9677		90+	Mal	e MCI_D e MCI_S	ecline_AD
H0529.3 H0441.1	9677 9974		90+ 90+	Male	e MCI_D e MCI_S e MCI_D	ecline_AD Stable_AD

Input data from Kivisakk et al


QC input data

	CA1	ICAM1	CHL1	TGFBI	ENG
Plasma_Sample					
H0529.3			4.73174		
H0441.1					
H0558.3			4.72713	8.92804	
H0499.2					
10468.3	Remo	oving m	nissing	, outlie	r data
		-	-		
· · · ·	INOTI	nalize/s	scale d	ata	Outoomo
Plasma_Sample	PIDN Ag	nalize/s	scale d	ata	Outcome
Plasma_Sample H0529.3	PIDN Ag				Outcome
	PIDN Ag			e x ale MCI_D	
H0529.3	9677		90+ Ma	ale MCI_D ale MCI_S	
H0529.3 H0441.1	9677 9974		90+ M: 90+ Fem: 90+ Fem:	ale MCI_D ale MCI_S ale MCI_D	

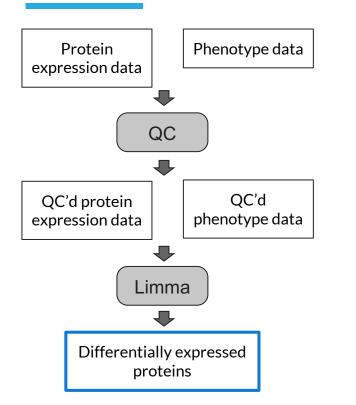

Get QC'd input data



	CA1	ICAM1	CHL1	TGFBI	ENG
Plasma_Sample					
H0529.3	7.62107	6.79971	4.73174	9.33471	3.12445
H0441.1	6.96085	6.98459	4.31338	9.06819	3.31576
H0558.3	7.16983	7.04907	4.72713	8.92804	3.16308
H0499.2	7.59577	6.80282	4.51559	9.17979	3.19292
H0468.3	7.25945	6.91728	4.84307	9.91809	3.47692
	PIDN Age	e_at_Base	line So	ex	Outcome
Plasma_Sample					

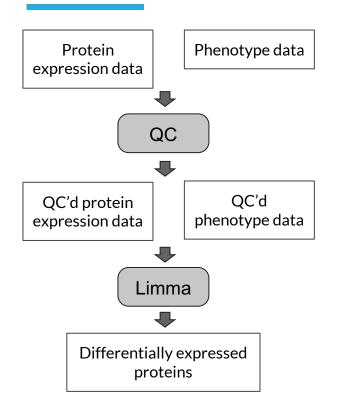
lasma_Sample				
H0529.3	9677	90+	Male	MCI_Decline_AD
H0441.1	9974	90+	Female	MCI_Stable_AD
H0558.3	9681	90+	Female	MCI_Decline_AD
H0499.2	9502	88	Male	MCI_Stable_AD
H0468.3	9635	87	Female	MCI_Stable_AD

Perform differential expression analysis using Limma



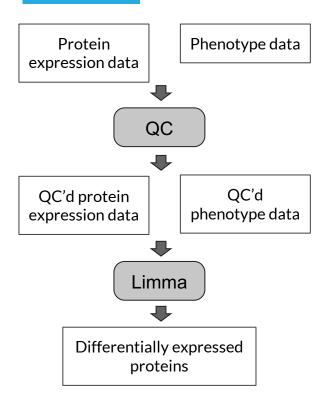

protein X expression in stable group

protein X expression in decline group


Found differentially expressed proteins

Run analysis using JupyterLab

~



oiobank*	PROJECTS ~		ORG ADMIN	~ HEL	P ~	Jup	oyterLab
à		Tool Li	ibrary	IANAGE	MON		Python
ê		Jupyte	erLab	search_46	926		Jupyter
_							
[+ New Jupyter	Lab				×	
6	Environment Name	JupyterLab	- 3/24/2023 8:59 AM				
6	Project	Ê					
6	Snapshot (Optional)	Select S	Snapshot on with the same configu		6		
6	Priority ②	High	on with the same conligi	ration and data	from a previous se	×	
6	Cluster Configuration	s	ingle Node	S	park Cluster		
6	Instance Type	e mem1_s	ssd1_v2_x2			~	
6	Duration (in hours)	4					
6		You can mod	ify the duration later insid	le the instance.			
6	Feature	ML				~	
Ĺ	Estimated Price: £0.198 based on instance type, d		mber of nodes	Cancel	Start Enviro	nment	


JupyterLab webinar

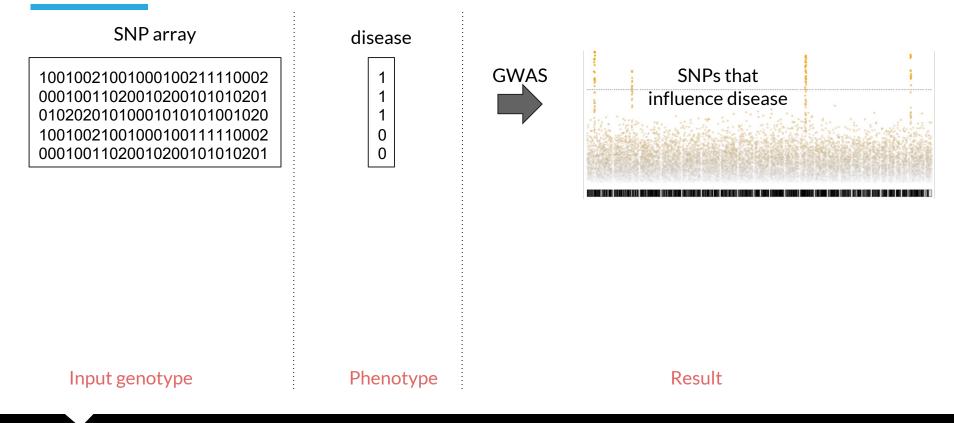
Run analysis using JupyterLab

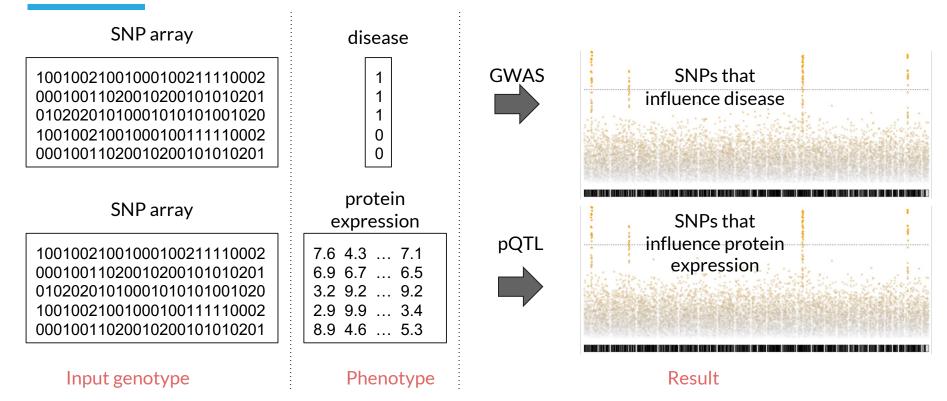
DNAnexus 🛛 💬

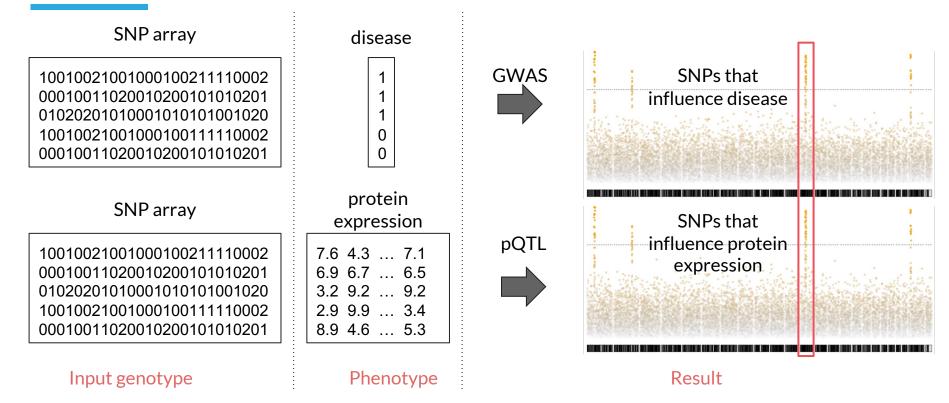
Resources

	Link	Configuration	Runtime & cost
Code to explore input data	<u>https://github.com/dnanexus/UKB_RAP/blo</u> <u>b/main/proteomics/protein_DE_analysis/1_</u> <u>preprocess_explore_data.ipynb</u>	Kernel: ML Priority: normal Recommended instance: mem1_ssd1_v2_x2	Runtime : ~ 1min Cost : ~£ 0.082
Code to perform differential expression	<u>https://github.com/dnanexus/UKB_RAP/blo</u> <u>b/main/proteomics/protein_DE_analysis/2</u> <u>differential_expression_analysis.ipynb</u>	Kernel: PYTHON_R Priority: normal Recommended instance: mem1_ssd1_v2_x2	Runtime : ~ 5 min Cost : ~£0.015
Input data publication	https://academic.oup.com/braincomms/arti cle/4/4/fcac155/6608340?login=false#36 6642284		


5 minute break Course evaluation


5. Example: pQTL analysis


pQTL identify SNPs that influence changes in protein expression


GWAS identify SNPs that influence trait

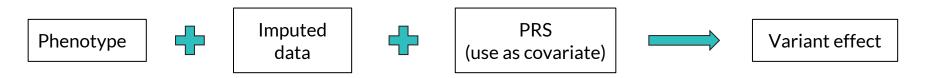
GWAS identify SNPs that influence trait

GWAS identify SNPs that influence trait

About REGENIE

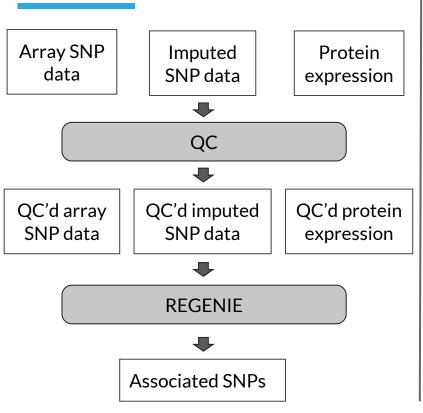
First step - calculate Polygenic Risk Score (PRS) for background association correction

<u>REGENIE paper</u> End-to-end Target Discovery webinar

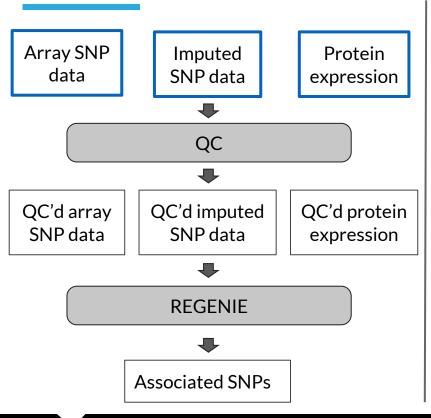


About REGENIE

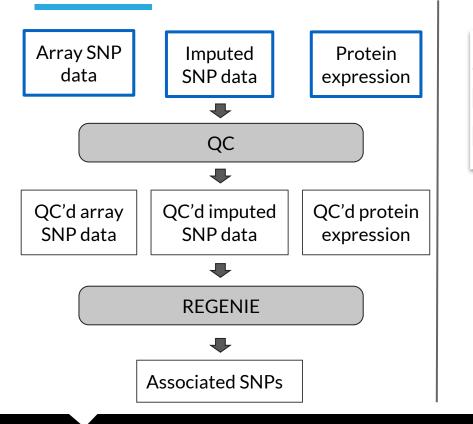
First step - calculate Polygenic Risk Score (PRS) for background association correction


Second step - test variant-phenotype association

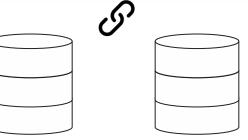
<u>REGENIE paper</u> End-to-end Target Discovery webinar



Approach



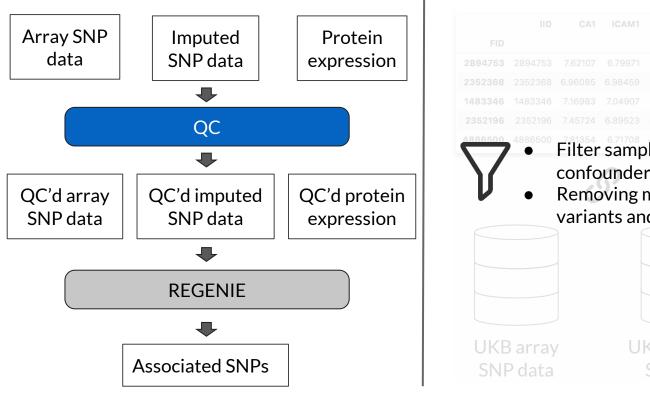
Simulate input data

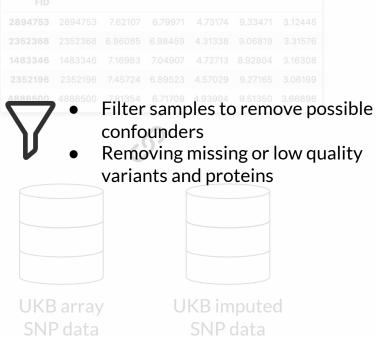


NOTE: We are using public proteomic data, not UKB data, for demonstration purposes

Matched genotype and protein expression data

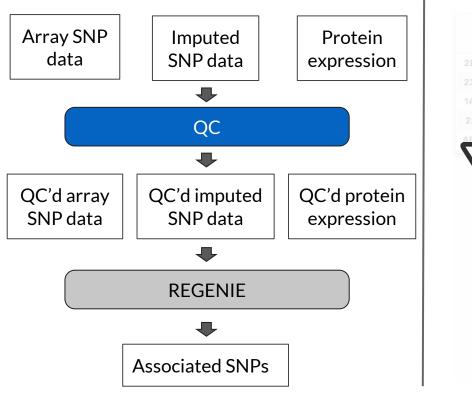
	IID	CA1	ICAM1	CHL1	TGFBI	ENG
FID						
2894753	2894753	7.62107	6.79971	4.73174	9.33471	3.12445
2352368	2352368	6.96085	6.98459	4.31338	9.06819	3.31576
1483346	1483346	7.16983	7.04907	4.72713	8.92804	3.16308
2352196	2352196	7.45724	6.89523	4.57029	9.27165	3.06199
4886500	4886500	7.81354	6.71708	4.93904	9.51350	3.66898

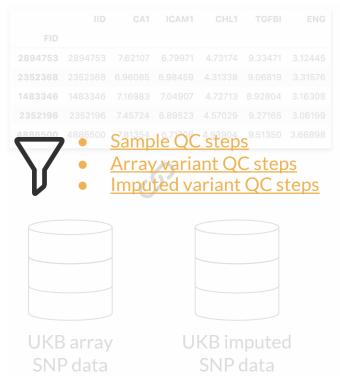


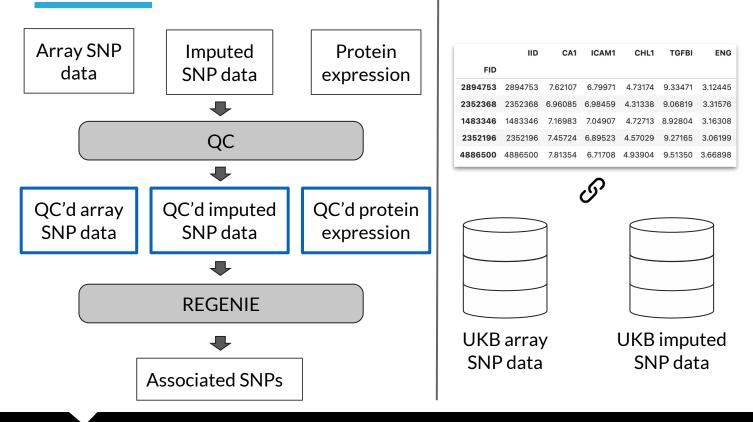

UKB array SNP data UKB imputed SNP data

DNAnexus[®]

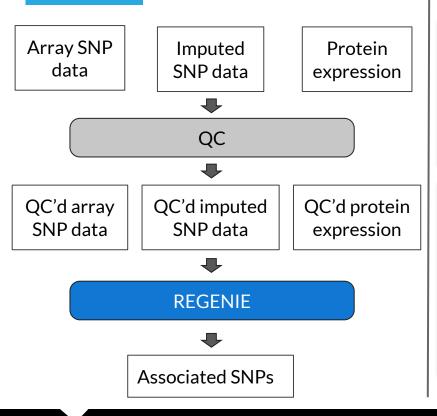
Notebook to simulate data


QC input data





QC input data


Get QC'd input data

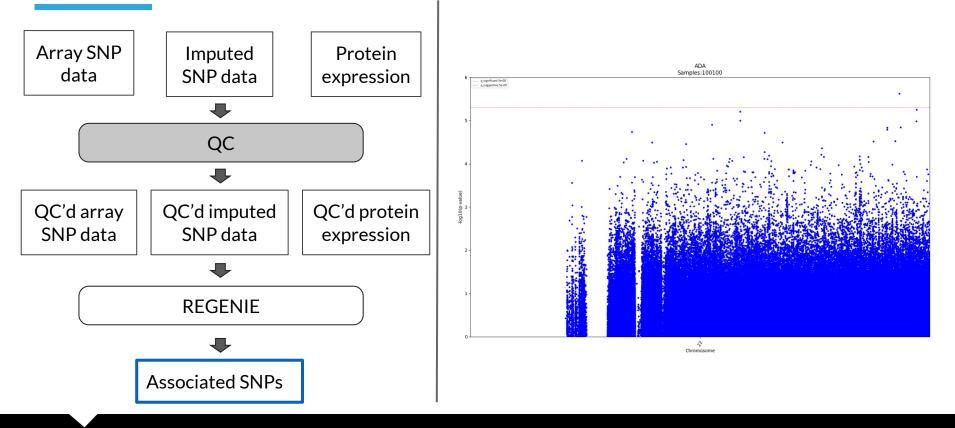
- 100,100 samples
 ~500,000 variants
- 200 proteins

Run GWAS

Tools Library All TOOLS
Any Name V Any Category V Any Type V
Name ^
REGENIE Genome-wide association analysis of large cohorts for quantitative and binary phenotypes using regenie

REGENIE GWAS analysis settings

Step 1


- Phenotype File: <. phe file containing protein expression>
- QC'D genotype Files (SNP array): <. [bed, bim, fam] QC'd genotype files after liftover>
- Variant IDs to extract: <.snplist file containing list of QC'd array SNPs>

Step 2

- Phenotype File: <. phe file containing protein expression>
- Sample ID File: <. phe file containing protein expression>
- BGEN, BGI, SAMPLE genotype Files (Imputed SNP): /Bulk/Imputation/ukb21008_c22_b0_v1.[bgen, bgi, sample]
- Variant IDs to extract: <.snplist file containing list of QC'd imputed SNPs>

Found significantly associated SNPs

DNAnexus[®]

	Link	Configuration	Runtime & cost
Code to create simulated protein expression data	<u>https://github.com/dnanexus/UKB_RAP/b lob/main/proteomics/protein_pQTL/1_sim ulate_input_data.ipynb</u>	Kernel: PYTHON_R Priority: normal Recommended instance: mem1_ssd1_v2_x2	Runtime : ~ 1min Cost : ~£ 0.0069
QC steps from end-to-end webinar	<u>https://github.com/dnanexus/UKB_RAP/t</u> ree/main/end_to_end_gwas_phewas		
Steps to run REGENIE	<u>https://github.com/dnanexus/UKB_RAP/b</u> <u>lob/main/proteomics/protein_pQTL/REA</u> <u>DME.md</u>		Runtime : ~ 19 hours Cost : ~£1.04
REGENIE publication	<u>https://www.nature.com/articles/s4158</u> <u>8-021-00870-7</u>		

Conclusion

- Researchers can use UKB-RAP to analyze proteomic data
- Proteomic data can be extracted via the Cohort Browser
- Differential expression analysis can be done using custom code in JupyterLab
- pQTL analysis can be done using REGENIE app following end-to-end tutorial steps

Helpful resources

- Integrative analysis of UKB proteomics data webinar
- UKB Research analysis platform overview webinar
- Introduction to JupyterLab notebooks on RAP webinar
- End to end target discovery with GWAS and PheWAS on the UKB research analysis platform - webinar

Upcoming events

Webinar: Dementia and Multimorbidity in Late-Life disease: Longitudinal and Multimodal Data Science Approaches

- ► When: Late June TBA
- Registration TBA
- Subscribe

All webinar recordings

DNANEXUS[®] Community

Join the conversation to:

Collaborate and **connect** with your peers and colleagues and experts from the UK Biobank and DNAnexus

On Community, you can:

Search and Discuss: You can browse specific topics, keywords, or questions and exchange helpful tips and ideas with your peers and colleagues

Get Early Access: As a Community member, you get first and early access to all DNAnexus webinars, trainings, and roundtable discussions

Stay Informed: You can learn the latest information and news on DNAnexus and the Research Analysis Platform

<u>OR</u>

Acknowledgements

Ondrej Klempir, PhD Sr. Community Engagement Scientist Anastazie Sedlakova, PhD Community Engagement/ Principal Scientist

Arkarachai Fungtammasan, PhD Scientific Community Manager/ Principal Scientist

UKB-RAP team Ben Busby, PhD Ted Laderas, PhD SciProd team

Thank you! Questions?

DNANEXUS © 2021 DNAnexus, Inc. All Rights Reserved. Proprietary and Confide