Package index
-
Isq() - I-squared calculation
-
add_metadata() - Add meta data to extracted data
-
add_rsq() - Estimate r-square of each association
-
allele_frequency() - Estimate allele frequency from SNP
-
available_outcomes() - Get list of studies with available GWAS summary statistics through API
-
clump_data() - Perform LD clumping on SNP data
-
combine_all_mrresults() - Combine all mr results
-
combine_data() - Combine data
-
contingency() - Obtain 2x2 contingency table from marginal parameters and odds ratio
-
convert_outcome_to_exposure() - Convert outcome data to exposure data
-
dat_to_MRInput() - Convert TwoSampleMR format to MendelianRandomization format
-
dat_to_RadialMR() - Convert dat to RadialMR format
-
default_parameters() - List of parameters for use with MR functions
-
directionality_test() - Perform MR Steiger test of directionality
-
effective_n() - Estimate the effective sample size in a case control study
-
enrichment() - Perform enrichment analysis
-
enrichment_method_list() - Get list of available p-value enrichment methods
-
estimate_trait_sd() - Estimate trait SD by obtaining beta estimates from z-scores and finding the ratio with original beta values
-
extract_instruments() - Find instruments for use in MR from the OpenGWAS database
-
extract_outcome_data() - Supply the output from
read_exposure_data()and all the SNPs therein will be queried against the requested outcomes in remote database using API.
-
fishers_combined_test() - Fisher's combined test
-
forest_plot() - Forest plot for multiple exposures and multiple outcomes
-
forest_plot_1_to_many() - 1-to-many forest plot
-
forest_plot_basic2() - A basic forest plot
-
format_1_to_many() - Format MR results for a 1-to-many forest plot
-
format_aries_mqtl() - Get data from methylation QTL results
-
format_data() - Read exposure or outcome data
-
format_gtex_eqtl() - Get data from eQTL catalog into correct format
-
format_gwas_catalog() - Get data selected from GWAS catalog into correct format
-
format_metab_qtls() - Get data from metabolomic QTL results
-
format_mr_results() - Format MR results for forest plot
-
format_proteomic_qtls() - Get data from proteomic QTL results
-
generate_odds_ratios() - Generate odds ratios
-
get_p_from_r2n() - Calculate p-value from R-squared and sample size
-
get_population_allele_frequency() - Estimate the allele frequency in population from case/control summary data
-
get_r_from_bsen() - Estimate R-squared from beta, standard error and sample size
-
get_r_from_lor() - Estimate proportion of variance of liability explained by SNP in general population
-
get_r_from_pn() - Calculate variance explained from p-values and sample size
-
get_se() - Get SE from effect size and p-value
-
harmonise_data() - Harmonise the alleles and effects between the exposure and outcome
-
harmonise_ld_dat() - Harmonise LD matrix against summary data
-
ld_matrix() - Get LD matrix for list of SNPs
-
ldsc_h2() - Univariate LDSC
-
ldsc_rg() - Bivariate LDSC
-
make_dat() - Convenient function to create a harmonised dataset
-
mr() - Perform all Mendelian randomization tests
-
mr_density_plot() - Density plot
-
mr_egger_regression() - Egger's regression for Mendelian randomization
-
mr_egger_regression_bootstrap() - Run bootstrap to generate standard errors for MR
-
mr_forest_plot() - Forest plot
-
mr_funnel_plot() - Funnel plot
-
mr_heterogeneity() - Get heterogeneity statistics
-
mr_ivw() - Inverse variance weighted regression
-
mr_ivw_fe() - Inverse variance weighted regression (fixed effects)
-
mr_ivw_mre() - Inverse variance weighted regression (multiplicative random effects model)
-
mr_ivw_radial() - Radial IVW analysis
-
mr_leaveoneout() - Leave one out sensitivity analysis
-
mr_leaveoneout_plot() - Plot results from leaveoneout analysis
-
mr_median() - MR median estimators
-
mr_meta_fixed() - Perform 2 sample IV using fixed effects meta analysis and delta method for standard errors
-
mr_meta_fixed_simple() - Perform 2 sample IV using simple standard error
-
mr_meta_random() - Perform 2 sample IV using random effects meta analysis and delta method for standard errors
-
mr_method_list() - Get list of available MR methods
-
mr_mode() - MR mode estimators
-
mr_moe() - Mixture of experts
-
mr_penalised_weighted_median() - Penalised weighted median MR
-
mr_pleiotropy_test() - Test for horizontal pleiotropy in MR analysis
-
mr_raps() - Robust adjusted profile score
-
mr_report() - Generate MR report
-
mr_rucker() - MR Rucker framework
-
mr_rucker_bootstrap() - Run rucker with bootstrap estimates
-
mr_rucker_cooksdistance() - MR Rucker with outliers automatically detected and removed
-
mr_rucker_jackknife() - Run rucker with jackknife estimates
-
mr_scatter_plot() - Create scatter plot with lines showing the causal estimate for different MR tests
-
mr_sign() - MR sign test
-
mr_simple_median() - Simple median method
-
mr_simple_mode() - MR simple mode estimator
-
mr_simple_mode_nome() - MR simple mode estimator (NOME)
-
mr_singlesnp() - Perform 2 sample MR on each SNP individually
-
mr_steiger() - MR Steiger test of directionality
-
mr_steiger2() - MR Steiger test of directionality
-
mr_two_sample_ml() - Maximum likelihood MR method
-
mr_uwr() - Unweighted regression
-
mr_wald_ratio() - Perform 2 sample IV using Wald ratio.
-
mr_weighted_median() - Weighted median method
-
mr_weighted_mode() - MR weighted mode estimator
-
mr_weighted_mode_nome() - MR weighted mode estimator (NOME)
-
mr_wrapper() - Perform full set of MR analyses
-
mv_basic() - Perform basic multivariable MR
-
mv_extract_exposures() - Extract exposure variables for multivariable MR
-
mv_extract_exposures_local() - Attempt to perform MVMR using local data
-
mv_harmonise_data() - Harmonise exposure and outcome for multivariable MR
-
mv_ivw() - Perform IVW multivariable MR
-
mv_lasso_feature_selection() - Apply LASSO feature selection to mvdat object
-
mv_multiple() - Perform IVW multivariable MR
-
mv_residual() - Perform basic multivariable MR
-
mv_subset() - Perform multivariable MR on subset of features
-
power_prune() - Power prune
-
read_exposure_data() - Read exposure data
-
read_outcome_data() - Read outcome data
-
run_mr_presso() - Wrapper for MR-PRESSO
-
run_mrmix() - Perform MRMix analysis on harmonised dat object
-
size.prune() - Size prune
-
sort_1_to_many() - Sort results for 1-to-many forest plot
-
split_exposure() - Split exposure column
-
split_outcome() - Split outcome column
-
standardise_units() - Try to standardise continuous traits to be in standard deviation units
-
steiger_filtering() - Steiger filtering function
-
steiger_sensitivity() - Evaluate the Steiger test's sensitivity to measurement error
-
subset_on_method() - Subset MR-results on method
-
trim() - Trim function to remove leading and trailing blank spaces
-
weighted_median() - Weighted median method
-
weighted_median_bootstrap() - Calculate standard errors for weighted median method using bootstrap