LocusZoom
Web: https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
The installation is standard and can be found from ~/rds/public_databases/software/locuszoom_1.4
.
A module was created pointing to this setup, i.e.,
module load ceuadmin/locuszoom/1.4
Specifically noted below are reference panel using INTERVAL (https://www.intervalstudy.org.uk/) data1 (hg19).
genotypes
Our genotype files are built as follows,
#!/usr/bin/bash
#SBATCH --job-name=_interval_
#SBATCH --mem=50000
#SBATCH --time=12:00:00
#SBATCH --account PETERS-SL3-CPU
#SBATCH --partition cclake-himem
#SBATCH --export ALL
#SBATCH --array=1-22
#SBATCH --output=_%A_%a.o
#SBATCH --error=_%A_%a.e
. /etc/profile.d/modules.sh
module purge
module load rhel7/default-ccl
export interval=~/rds/post_qc_data/interval/
export impute=${interval}/imputed/uk10k_1000g_b37
export X=/rds/project/jmmh2/rds-jmmh2-projects/covid/ace2/interval_genetic_data/interval_imputed_data
export chr=$SLURM_ARRAY_TASK_ID
export src=${impute}/impute_${chr}_interval.bgen
export dst=~/rds/public_databases/software/locuszoom_1.4/data/interval/genotypes/EUR
# as in 1000Gwenomes 2014 version with ChrX added here, 1000G/genotypes/2014-10-14/EUR
if [ ! -d ${dst} ]; then mkdir -p ${dst}; fi
function autosomes()
{
export src=~/INF/INTERVAL/per_chr
module load ceuadmin/plink/2.0
parallel -C' ' -j5 '
plink2 --allow-no-sex \
--bgen ${src}/interval.imputed.olink.chr_{1}.bgen \
--make-bed \
--out ${src}/chr{1} \
--sample ${src}/interval.imputed.olink.chr_{1}.sample
' ::: $(seq 22)
parallel -C' ' 'mv ${src}/chr{1}.{2} ${dst}/chr{1}.{2}' ::: $(seq 22) ::: bed bim fam
}
# wrong since chr${1}.{2}
# parallel -C' ' --dry-run 'mv ${src}/interval.imputed.olink.chr_{1}.{2} ${dst}/chr{1}.{2}' ::: $(seq 22) ::: bed bim fam
function bgen()
{
plink2 --bgen ${impute}/impute_${chr}_interval.bgen ref-unknown \
--sample ${impute}/interval.samples \
--export bgen-1.2 bits=8 --dosage-erase-threshold 0.001 \
--set-missing-var-ids chr@:#_\$r_\$a --new-id-max-allele-len 680 \
--make-bed \
--out ${dst}/chr${chr}
}
function X()
{
plink2 --vcf ${X}/INTERVAL_X_imp_ann_filt_v2.vcf.gz \
--export bgen-1.2 bits=8 \
--dosage-erase-threshold 0.001 \
--set-missing-var-ids @:#_\$r_\$a \
--new-id-max-allele-len 680 \
--make-bed \
--out ${dst}/chrX
}
bgen
The autosomes()
function takes advantage of the reference panel used in the SCALLOP analysis as well as GNU parallel
such that no SLURM job is not needed. For both this panel and the whole cohort, the .bgen/.sample (whose bgen+bed/bim/fam ~ 1.2TB instead of 327GB) are available.
A specific handling is made with respect to chromosome X, which does not need a job array; slight changes are necessary:
cp -p chrX.fam chrX.fam-original
# 0 110000305926_110000305926 0 0 0 -
cp -p chrX.bim chrX.bim-original
# X X:60425_C_A 0 60425 A C
cp -p chrX.sample chrX.sample-original
# ID_1 ID_2 missing sex
# 0 0 0 D
# 0 110000305926_110000305926 0 NA
cat <(head -2 chrX.sample-original) \
<(sed '1,2d' chrX.sample-original | cut -f1 --complement chrX.sample-original | sed 's/_/ /') > chrX.sample
cp -p chrX.log chrX.log-original
# 0 110000305926_110000305926 0 0 0 -9
cut -f1 --complement chrX.fam-original | sed 's/_/\t/' > chrX.fam
sed -i 's/X/23/;s/X/chr23/' chrX.bim
Importantly, we convert all rsid/SNPid to chr:pos as required by locuszoom.
parallel -C ' ' -j5 '
mv chr{}.bim chr{}.bim.orig
awk -vFS="\t" -vOFS="\t" "{\$2=\"chr\"\$1\":\"\$4;print}" chr{}.bim.orig > chr{}.bim
' ::: $(echo {1..22} X)
m2zfast.conf
This is the LocusZoom configuration file, whose entries are extended accordingly.
# Required programs.
METAL2ZOOM_PATH = "bin/locuszoom.R";
NEWFUGUE_PATH = "new_fugue";
PLINK_PATH = "plink";
RSCRIPT_PATH = "Rscript";
TABIX_PATH = "tabix";
# SQLite database settings.
SQLITE_DB = {
'hg18' : "data/database/locuszoom_hg18.db",
'hg19' : "data/database/locuszoom_hg19.db",
'interval37' : "data/database/locuszoom_interval_hg19.db",
'hg38' : "data/database/locuszoom_hg38.db",
};
# GWAS catalog files
GWAS_CATS = {
'hg18' : {
'whole-cat_significant-only' : {
'file' : "data/gwas_catalog/gwas_catalog_hg18.txt",
'desc' : "The NHGRI GWAS catalog, filtered to SNPs with p-value < 5E-08"
}
},
'hg19' : {
'whole-cat_significant-only' : {
'file' : "data/gwas_catalog/gwas_catalog_hg19.txt",
'desc' : "The EBI GWAS catalog, filtered to SNPs with p-value < 5E-08"
}
},
'hg38' : {
'whole-cat_significant-only' : {
'file' : "data/gwas_catalog/gwas_catalog_hg38.txt",
'desc' : "The EBI GWAS catalog, filtered to SNPs with p-value < 5E-08"
}
}
}
# Location of genotypes to use for LD calculations.
LD_DB = {
# 1000G phase 3
'1000G_Nov2014' : {
'hg19' : {
'EUR' : {
'bim_dir' : "data/1000G/genotypes/2014-10-14/EUR/",
},
'ASN' : {
'bim_dir' : "data/1000G/genotypes/2014-10-14/ASN/",
},
'AFR' : {
'bim_dir' : "data/1000G/genotypes/2014-10-14/AFR/",
},
'AMR' : {
'bim_dir' : "data/1000G/genotypes/2014-10-14/AMR/",
}
},
'hg38' : {
'EUR' : {
'bim_dir' : "data/1000G/genotypes/2017-04-10/EUR/",
},
'AFR' : {
'bim_dir' : "data/1000G/genotypes/2017-04-10/AFR/",
},
'AMR' : {
'bim_dir' : "data/1000G/genotypes/2017-04-10/AMR/",
},
'EAS' : {
'bim_dir' : "data/1000G/genotypes/2017-04-10/EAS/",
},
'SAS' : {
'bim_dir' : "data/1000G/genotypes/2017-04-10/SAS/",
}
}
},
'1000G_March2012' : {
'hg19' : {
'EUR' : {
'bim_dir' : "data/1000G/genotypes/2012-03/EUR/",
},
'ASN' : {
'bim_dir' : "data/1000G/genotypes/2012-03/ASN/",
},
'AFR' : {
'bim_dir' : "data/1000G/genotypes/2012-03/AFR/",
},
'AMR' : {
'bim_dir' : "data/1000G/genotypes/2012-03/AMR/",
}
}
},
'1000G_June2010' : {
'hg18' : {
'CEU' : {
'ped_dir' : "data/1000G/genotypes/2010-06/CEU/pedFiles/",
'map_dir' : "data/1000G/genotypes/2010-06/CEU/mapFiles/"
},
'JPT+CHB' : {
'ped_dir' : "data/1000G/genotypes/2010-06/JPT+CHB/pedFiles/",
'map_dir' : "data/1000G/genotypes/2010-06/JPT+CHB/mapFiles/"
},
'YRI' : {
'ped_dir' : "data/1000G/genotypes/2010-06/YRI/pedFiles/",
'map_dir' : "data/1000G/genotypes/2010-06/YRI/mapFiles/"
}
}
},
'hapmap' : {
'hg18' : {
'CEU' : {
'ped_dir' : "data/hapmap/genotypes/2008-10_phaseII/CEU/pedFiles/",
'map_dir' : "data/hapmap/genotypes/2008-10_phaseII/CEU/mapFiles/"
},
'JPT+CHB' : {
'ped_dir' : "data/hapmap/genotypes/2008-10_phaseII/JPT+CHB/pedFiles/",
'map_dir' : "data/hapmap/genotypes/2008-10_phaseII/JPT+CHB/mapFiles/"
},
'YRI' : {
'ped_dir' : "data/hapmap/genotypes/2008-10_phaseII/YRI/pedFiles/",
'map_dir' : "data/hapmap/genotypes/2008-10_phaseII/YRI/mapFiles/"
}
}
},
'interval' : {
'hg19' : {
'EUR' : {
'bim_dir' : "data/1000G/genotypes/2014-10-14/EUR/",
}
},
'interval37' : {
'EUR' : {
'bim_dir' : "data/interval/genotypes/EUR/",
}
}
}
}
where there is an option to use a customised database named locuszoom_interval_hg19.db
in the interval
section.
We have seen error message Warning: rs114800762 is not the current name in genome build (should be: rs3982708)
, which is recorded in refsnp_trans
table (though the snp_pos
does have rs114800762) and we now have the flexibility to mask it:
sqlite3 locuszoom_interval_hg19.db <<END
UPDATE refsnp_trans SET rs_current = "rs114800762" WHERE rs_orig = "rs114800762";
END
Our call is then locuszoom --source interval --build interval37 --pop EUR ...
.
snp_pos
It seems unnecessary to replace the snp_pos
(~125M) table in locuszoom_hg19.db
but nevertheless here is how to.
The following script creates a SNP-position file (~90M).
#!/usr/bin/bash
export interval=~/rds/post_qc_data/interval/
export impute=${interval}/imputed/uk10k_1000g_b37
export snpstats=${interval}/reference_files/genetic/reference_files_genotyped_imputed/
export X=/rds/project/jmmh2/rds-jmmh2-projects/covid/ace2/interval_genetic_data/interval_imputed_data
export TMPDIR=${HPC_WORK}/work
function snp_pos()
{
(
for chr in {1..22}
do
cut -f1,3-6,19 ${snpstats}/impute_${chr}_interval.snpstats | \
awk 'NR>1{
chr=$2+0
pos=$3
a1=$4
a2=$5
# sort by alleles appropriate for meta-analysis
if(a1>a2) snpid="chr"chr":"pos"_"a2"_"a1;
else snpid="chr"chr":"pos"_"a1"_"a2
if($1==".") rsid=snpid; else rsid=$1
print rsid,chr,pos
}'
done
awk '{print $5,23,$2}' ${X}/INTERVAL_X_imp_ann_filt_v2_stats.txt
) | sort -k2,2n -k3,3n > interval.snp_pos.csv
sed -i 's/ /,/g' interval.snp_pos.csv
}
snp_pos
We then examine the schema of built-in SNP-position table from locuszoom_hg19.db
.
$ sqlite3 locuszoom_hg19.db
.tables
.schema snp_pos
.quit
A customised database is thus derived via cp -p locuszoom_hg19.db locuszoom_interval_hg19.db
(faster than .save locuszoom_interval_hg19.db
inside sqlite3
above).
Now the INTERVAL SNP-position file above is taken.
sqlite3 locuszoom_interval_hg19.db
DROP TABLE IF EXISTS snp_pos;
CREATE TABLE snp_pos ( snp TEXT, chr INTEGER, pos INTEGER );
.mode csv
.import /home/jhz22/interval.snp_pos.csv snp_pos
CREATE INDEX ind_snp_pos_chrpos ON snp_pos (chr,pos);
CREATE INDEX ind_snp_pos_snp ON snp_pos (snp);
.quit
We could confirm availability of chromosome X data with select * from snp_pos where chr==23;
.
Example
Assuming that our phenotype is $phenoname-$rsid.lz, we could generate a plot on $chr:$start-$end as follows,
export phenoname=$phenoname
echo $chr $start $end $rsid | \
parallel -C' ' '
locuszoom --source interval --build hg19 --pop EUR --metal ${phenoname}-{4}.lz \
--delim tab title="${phenoname}-{4}" \
--markercol MarkerName --pvalcol log10P --no-transform --chr {1} --start {2} --end {3} --cache None \
--no-date --plotonly --prefix=${phenoname} --rundir . --svg --refsnp {4}
'
-
### Permission to access
Permission is needed to access. ↩